http://www.digitaltwin.tv

[财经]市北GMIS 2019:杨强用联邦学习打破数据孤岛

7月20日,「市北·GMIS」第二天更加精彩,杨强、吴恩达、俞凯等重磅嘉宾继续带来了 12 场主题演讲,内容涵盖联邦学习、认知智能、图表征神经网络等前沿技术,同时 AI 应用侧的探索也异彩纷呈。

在前沿技术方面,杨强教授分享了如何用联邦学习打破数据割裂,吴恩达谈到小数据、无监督学习对未来人工智能发展的重要性,俞凯也抛出认知智能的技术演进路线。

在 AI 应用方面,华为带来从工程视角审视人工智能的新思路,阿里巴巴、美团展示了 AI 在大规模场景数据中的应用,周涛教授则呈现 AI 社会治理与监管方面的新研究。

杨强:用联邦学习打破「数据孤岛」

作为今天大会的第一位开场嘉宾,微众银行首席人工智能官、国际人工智能学会理事长、香港科技大学教授杨强带来联邦学习的最新发展与应用。

[财经]市北GMIS 2019:杨强用联邦学习打破数据孤岛

AI 发展到今天面临很大挑战,尤其是数据挑战。数据孤岛、小数据、用户隐私的保护等导致数据的割裂,让 AI 技术很难发挥出价值。为了解决这一问题,杨强教授提出「联邦学习」的研究方向。

所谓联邦学习,是多个数据方之间组成一个联盟,共同参与到全局建模的建设中,各方之间在保护数据隐私和模型参数基础上,仅共享模型加密后的参数,让共享模型达到更优的效果。

杨强介绍道,联邦学习可分为横向联邦和纵向联邦,横向联邦是指企业各方数据维度相同、ID 维度不同,更多存在于消费者应用中;纵向联邦是指企业各方数据的 ID 维度相同(样本重叠)、数据维度不同,更多存在于 B 端应用。

在具体的使用场景中,杨强重点介绍了联邦学习在金融行业中的应用。比如针对保险行业的个性化保险定价问题,一家互联网企业和一家保险企业进行数据合作,这种合作数据的 ID 重合度相当大,数据特征维度大大增加,使模型的个性化定价效果显著提升,为保险企业带来 8 倍覆盖率提升和 1.5 倍利润率提升。

在另外一个小微企业信贷管理案例中,使用联邦学习后,企业将风控区分度提升 12%,使贷款不良率小于千分之五。

即使在双方既没有共同的 ID,数据特征也不同的情况下,也可以使用迁移学习结合联邦学习进行共同建模。

杨强强调,联邦学习一定是多方共同协作组成一个联盟,生态的建设十分重要。它最大的优势是,保证数据不出户,通过生态在不同行业选取合作伙伴,用群体智能不断提升模型效果。

未来,安全合规、防御攻击、算法效率、联盟机制等都需要进一步研究。比如联邦学习中各方合作的一个基础就是加密技术,加密算法的效率显得尤为重要,算法的改善还有很长的路要走。

吴恩达:利用 AI 带来的动能

深度学习先驱吴恩达(Andrew Ng)是大家耳熟能详的名字,他的演讲也获得了最多的掌声。今天,吴恩达在 GMIS 大会上与人们探讨了企业的人工智能转型。

「四年前我提出了一个概念:AI 是新的电力。现在我得说,AI 带来的动能正在展现效果。」吴恩达说道。「看看近年来有关 AI 的工作需求数量,每年都有 35% 的增长,深度学习的发展正在让人工智能领域变得繁荣。麦肯锡最近的预测认为到 2030 年,全球的经济增长量中将有 13 万亿美元来自人工智能技术的贡献。」

[财经]市北GMIS 2019:杨强用联邦学习打破数据孤岛

「以机器学习领域的论文数量为例,两个月前谷歌的 Jeff Dean 曾展示了一个数字:arXiv 上每天关于机器学习的论文数量超过 100 篇。」吴恩达表示。「今天,我们也有了很多机器学习工具,包括神经网络框架 TensorFlow、PyTorch、MXNet 和百度飞桨,这些工具正在让人们使用机器学习的门槛变得越来越低。」

吴恩达表示,几个月前他曾在加州参加了一个创业挑战:一支来自印度的团队展示了机器人应用方法,其可以自动拍摄农田的照片。有趣的是,开发这一应用的人只有 12 岁——他使用开源的工具和算法完成了这一任务。现在的人工智能业务已经可以由任何人来做了。

通过足够的数据和算力、灵活的工具以及创新的想法,我们可以建立起属于自己的 AI 项目。很多公司的 CEO 都在担心如何把 AI 技术加入企业工作流程中。这个转型过程有时是 1-2 年,或是更长。他们担心选择了错误的项目、设定了不切实际的目标,如果转型失败,公司会蒙受巨大损失。

「看看今天的世界,有关 AI 的应用越来越多了。但企业的 AI 转型并不是开发一个 APP 这么简单。」吴恩达表示。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。